Variation of Parameters

Dr. Antonios Kalampakas

Ordinary Differential Equations - MA 266
Variation of Parameters

We introduce a method for solving non-homogeneous linear second order DE with constant coefficients

\[a_2 y'' + a_1 y' + a_0 y = g(x) \]

where \(a_2, a_1, a_0 \) are constants. To solve we follow the next steps

1. We find the solution \(y_c \) of the complementary homogeneous

\[a_2 y'' + a_1 y' + a_0 y = 0 \]

\[y_c = c_1 y_1 + c_2 y_2 \]

2. We divide the DE by \(a_2 \) put it in standard form

\[y'' + Py' + Qy = f(x) \]

3. We find functions \(u_1, u_2 \) given by

\[u_1' = -\frac{y_2 f(x)}{W}, \quad u_2' = \frac{y_1 f(x)}{W} \]

where \(W \) is the Wronskian of \(y_1 \) and \(y_2 \).
Variation of Parameters

1. We find the solution y_c of the complementary homogeneous
 $a_2 y'' + a_1 y' + a_0 y = 0$

 $y_c = c_1 y_1 + c_2 y_2$

2. We divide the DE by a_2 put it in standard form
 $y'' + Py' + Qy = f(x)$ to determine $f(x)$

3. We find functions u_1, u_2 given by

 $u_1' = -\frac{y_2 f(x)}{W}$, $u_2' = \frac{y_1 f(x)}{W}$

 where W is the Wronskian of y_1 and y_2.

4. The general solution of the equation is

 $y = y_c + y_p$

 where y_p is

 $y_p = u_1 y_1 + u_2 y_2$
Example

Solve

\[y'' - 4y' + 4y = (x + 1)e^{2x} \]
Example

Solve

\[4y'' + 36y = \csc 3x \]
Example

Solve

\[y'' + y = \sec x \]
Example

Solve

\[y'' - 9y = \frac{9x}{e^{3x}} \]
Exercises

Exercises. Solve Exercises 1-22 from Page 162 of the Textbook